马上注册,结交更多好友,享用更多功能,让你轻松玩转110BBS论坛
您需要 登录 才可以下载或查看,没有账号?立即注册
x
十字交叉法是可以将复杂的方程运算转化为简便的比例关系式,从而实现快速运算的目的。在公务员考试行测的数量关系部分,十字交叉法主要是解决混合求平均问题、已知总体或部分的平均量、一共涉及五个量,若题中已知其中四个量,对应其位置,便可以求出五个量中的任意一个量。在考试中,该方法主要用于平均分问题、利润平均问题、溶液混合问题等。下面,中公教育专家进行具体说明。 一、十字交叉法应用模型 已知部分1的平均量为a,样本数为A;部分2的平均量为b(b<a),样本数为b;整体的平均量为x。以上五个量具有以下关系:</a),样本数为b;整体的平均量为x。以上五个量具有以下关系: 二、十字交叉法应用题型 1、平均分问题 例1:某学校对其 120 名学生进行随机抽查体能测验,平均分是 73 分,其中男生的平均分是 75 分,女生的平均分是 63 分,男生比女生多多少人? A.70 B.80 C.60 D.85 【中公解析】B。男生部分平均分为75分,样本数为人数;女生部分的平均分为63分,样本数为人数;整体的平均分为73分,差值量之比等于两个部分的人数之比。如下图示: 所以男生人数是女生的5倍,则总人数是女生的6倍,共计120人,所以女生是20人,男生是100人,男生比女生多80人。 2、利润问题 例2:有一批商品,按照 50%的利润定价,结果只售出 70%后,剩下的商品决定打折出售,这样获得的全部利润是原来能获得利润的 82%。问,余下的商品几折出售? A.6.5 折 B.8 折 C.7.5 折 D.7 折 【中公解析】B。一部分平均利润率为50%,样本数为总体量的70%;另一部分平均利润率为打折后的利润率,未知设为x%,样本数为总体量的30%;整体的评级利润率为50%×82%=41%,差值量之比等于两个部分的样本数之比。如下图示: 设进价为100,则原定价为100×(1+50%)=150,打折后价格为100×(1+20%)=120,所以折扣为:120÷150=80%,即打了八折。 3、溶液问题 例3:已知在浓度为 90%的甲瓶中取 40g 溶液,在浓度为 60%的乙瓶中取 20g 溶液,进行混合,得到的溶液的浓度为多少? A.75% B.80% C.85% D.90% 【中公解析】B。一部分溶液浓度为90%,样本数为溶液量40g;另一部分溶液浓度为60%,样本数为溶液量20g;整体的浓度未知,设为x%。差值量之比等于两个部分的样本数之比。如下图示: 解得x=80。即混合后的平均浓度为80%。 根据以上例题可以发现,在考试中遇到混合求平均问题,多数可以通过十字交叉法快读解得。 中公教育专家认为,为了化繁为简,可以将复杂的方程和等式运算转化为简单的列式运算,大家可以使用十字交叉法,尤其是遇到多个量混合求平均时,可以优先考虑这种方法。 相关文章: 2015湖南公务员考试报名确认缴费入口 照片修改 文章来源衡阳公务员考试网http://hengyang.offcn.com/
|