马上注册,结交更多好友,享用更多功能,让你轻松玩转110BBS论坛
您需要 登录 才可以下载或查看,没有账号?立即注册
x
这些是公考中曾经出现过的一些比较重要的数学运算部分题型十二大类(不完整的部分大家可以根据自己情况往上添加,只是希望能给大家提供个思路和框架),乃自己学习总结,还有一些会定期发上,如果你觉得有用,请顶起,尊重他人劳动果实,转载请注明出处,谢谢!
一、容斥原理 例题1:对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧,其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既然喜欢看球赛又喜欢看戏剧的有18人,既喜欢看哪电影又喜欢看戏剧的有16人,三种都喜欢看的有12,则只喜欢看电影的有多少人? 解析:图示法 例题2:小王和小明参加同一次考试,如果小王答对的题目占题目总数的3/4,小明答对了27道题,他们两人都答对的题目占题目总数的2/3,那么两人都没有答对的题目共有多少道? 解析:2X/3≤27≤X 例题3:在一次国际会议上,人们发现与会代表中有10人是东欧人,有6人是亚太地区的,会说汉语的有6人。欧美地区的代表占了与会代表总数的2/3以上,而东欧代表占欧美代表的2/3以上,由此可见,与会代表人数可能是多少? 解析:由于东欧代表10人,占欧美代表的2/3以上,则欧美代表<10÷2/3=15,即欧美代表最多14人; 由于欧美代表最多14人,占与会代表的2/3以上,则欧美代表<14÷2/3=21,即欧美代表最多20人; 例题4:一个外国游客到北京旅游,他要么上午出去玩,下午在宾馆休息,要么上午休息,下午出去玩,而下雨天他只能一天都呆在旅馆里,期间不下雨的天数是12天,他上午呆在旅馆的天数为8天,下午呆在旅馆的天数为12天,他在北京共待了多少天? 解析:如果其在北京的几天内都没下雨,那么总天数也只有12+8=20天,据此可先排除几个选项 上午呆在旅馆的天数包括下雨的天数,下午呆在旅馆的天数包括下雨的天数,而不下雨的天数有12天,则下雨的天数为:(12+8-12)/2=4天; 则总天数即为下雨的天数+不下雨的天数=4+12=16天 二、抽屉原理 例题1:从一副完整的扑克牌中,至少抽出多少张牌,才能保证至少6张牌的花色相同? 解析:每种抽5张,加大小猫,再抽1张即可 例题2:一个袋子里有44只玻璃球,其中白色的2个,红色的3个,绿色的4个,黄色的5个,棕色的6个,黑色的7个,蓝色的8个,透明的9个,如果每次从中抽一个,那么要得到2个同色的球,最多要取多少次?
解析:(个数-1)×种数
三、年龄问题 例题:爸爸、哥哥、妹妹3个人,现在的年龄和是64岁,当爸爸是哥哥年龄的3倍时,妹妹是9岁,当哥哥是妹妹年龄的2倍时,爸爸34岁,则爸爸现在的年龄是?
解析:根据年龄差列方程
四、植树问题 例题:园林工人要在周长为300米的圆形花坛边等距栽树,他们先沿着花坛的边每隔3米挖一个坑,当挖到30个坑时,突然接到通知:改为每隔5米种一棵树,这样,他们还要挖多少个坑才能完成任务? 解析:注意重复的坑 例题:李大爷在马路边散步,路边均匀的种着一行树,李大爷从第一棵树走到第13棵树勇了6分钟,李大爷又往前走了几棵树后就往回走,当他回到第五棵树时共用了30分钟,李大爷散步到第几棵树的时候开始往回走? 解析:先计算出每走一个树间距用6÷12=0.5分钟,则30分钟内能走60个树间距,那么总共走了60+4个树间距,则单程要走64÷2=32个树间距,则树的棵树为32+1=33 五、牛吃草问题 详见“补遗~牛吃草问题解决方案” 六、鸡兔同笼问题 代入法、列方程法、如下法 例题1:鸡兔同笼,共有头40个,足92个,求兔子有多少只? 解析:如果都是鸡,则共有80个脚,但脚总共有92个,多92-80=12只脚 每只兔子比鸡多2只脚,则兔子个数为12÷2=6只 例题2:全班46人去划船,共有12只船,其中大船每个坐5人,小船每个坐3人,其中大船有几个? 解析:如果都是小船,则共可坐36人,实际坐46人,多46-36=10人 每只大船比小船多坐2人,则大船个数为10÷2=5只 七、盈亏问题 代入法、列方程法、如下法 例题1:若干学生住若干房间,如果每间住4人则有20人没地方住,如果每间住8人则有一间只有4人住,问共有多少名学生? A.30人 B.34人 C.40人 D.44人 解析:每间多住8-4=4人,可多住20+4=24人,则房间数:24÷4=6 例题2:若干个同学去划船,他们租了一些船,若每船4人则多5人,若每船5人则船上有4个空位,共有多少个同学?( ) A. 17 B. 19 C. 26 D. 41 解析:每船多坐5-4=1人,可多坐4+5=9人,则船数:9÷1=9 例题3:旅游团安排住宿,若有4个房间每间住4人,其余房间每间住5人,还剩2 人,若有4个房间每间住5人,其余房间每间住4人,正好住下,该旅游团有多少人? A.43 B.38 C.33 D.28 【传统解析】根据盈余问题的解法可知,其余的房间数为(2-0)/(5-4)=2(间),所以总人数为4×5+2×4=28人,选D 【倍数法】根据题意可知,备选项所给的总人数减去4×5=20以后是4的倍数,故选D 八、逆推问题 例题1:小明从图书馆借来一批书,他先给了甲5本和剩下的1/5,然后给了乙4本和剩下的1/4,又给了丙3本和剩下的1/3,又给了丁2本和剩下的1/2,最后自己还剩下2本书,则小明共借了多少本书? 解析:给丁前有2÷(1-1/2)+2=6本;给丙前有6÷(1-1/3)+3=12本…… 例题2:三筐苹果共120斤,如果从第一筐中取出15斤放入第二筐,从第二筐中取出8斤放入第三筐,从第三筐中取出2斤放入第一筐。这时三筐苹果的重量相等,问原来第二筐中有苹果多少斤? 解析:注意重要信息“三筐苹果的重量相等” 九、概率问题 略 十、统筹问题 略 十一、等差数列问题 例题1:某车间从3月2日开始每天调入一人,已知每人每天生产1件产品,该车间从3月1日至3月21日共生产840件产品,该车间原有工人多少名? A. 20 B. 30 C. 35 D.40 解析:设3月1号为a人,2号为a+1人……21号为a+20人,等差数列 例题2:某天,小王发现办公桌上的条例已经有7天没有翻了,就一次翻了7张,这7张的日期加起来之和是77(76,74,72),那么这一天是几号? 解析:如果这七天是同一个月的,则和应该为7的倍数,如果其和不为7的倍数,则肯定是跨月翻的; 77÷7=11中间数,构造8、9、10、11、12、13、14 如果和为76,则前两天为30、31 如果和为74,则前两天为29、30 如果和为72,则前两天为28、29 如果和为70,则前两天为27、28 十二、平均数问题 例题1:A、B、C、D、E五个人在一次满分为100分的考试中,得分都是大于91分的整数。如果A、B、C的平均分为95分,B、C、D的平均分为94分,A是第一名,E是第三名得96分。则D的得分是:() A、96分 B、98分 C、97分 D、99分 解析1:A+B+C=285 D+B+C=282 A-D=3 得分不同,排除A,A≤100,则D≤97,排除BD 解析2:A+B+C=285 D+B+C=282 A-D=3 由于E第三名96分,则98≤A≤100,95≤D≤97 得分不同,则D为95或者97,代入可判断只能为97 例题2:把自然数1,2,3,4,5……98,99分成三组,如果每组数的平均数刚好相等,那么此平均数为( ) A、55 B、60 C、45 D、50 解析:每组平均数与整体平均数相等=(1+99)/2=50 |