马上注册,结交更多好友,享用更多功能,让你轻松玩转110BBS论坛
您需要 登录 才可以下载或查看,没有账号?立即注册
x
递推数列专指是从数列的某一项开始,后面的项都是通过它前边的若干项进行四则运算得出的数列。前项在进行四则运算推出后项的时候,有时会需要进行修正,这就引出了修正项的概念。例如2、3、7、22,这样的一个递推数列中,2*3+1=7,3*7+1=22,数列从7开始,此后的每一项都是由它前两项相乘再加1得来,其中+1就是修正项。 变化形式一:常数数列(同样数字构成的数列,例如7、7、7、7、…)。 【例1】3、6、8、13、20、( ) A.31 B.28 C.42 D.32 【解析】从括号前两项入手判断趋势,20不到13的二倍,初步判定是加法的递推,验证得出:3+6-1=8;6+8-1=13;8+13-1=20。因此()=13+20-1=32,答案选D。 【注】此题的修正项为-1、-1、-1、…就是一个常数数列。很容易知道下一项的修正项依旧是-1. 变化形式二:基础数列(等差数列、等比数列、质数合数数列、周期数列等等)。 【例2】2、2、3、4、9、32、( ) A.129 B.215 C.257 D.283 【解析】依旧从括号前两项去判断趋势,32接近9的4倍即36,通过前项验证得出:2*2-1=3;2*3-2=4;3*4-3=9;4*9-4=32.其规律是:前两项相乘减去一个1、2、3、4、…的等差数列得到后一项。故()=9*32-5=283.答案选D。 【注】基础数列有很多种类,是修正项的一种主流形式,在此要提醒广大考生注意的是合数(4、6、9、10、12…)和质数(2、3、5、7、11、13…)以及非合数(由1和质数数列构成)和非质数(由1和合数数列构成)这四类基础数列。 变化形式三:正负数列(正负号交替出现的数列) 【例3】3、7、16、107、( ) A.1707 B.1704 C.1086 D.1072 【解析】判断趋势,107接近16和7的乘积,验证得出:3*7-5=16;7*16+5=107,可知这是一个乘积的递推数列,而修正项是-5、+5、-5…的正负数列,故()=16*107-5=1707,答案为A。 【注】正负数列的典型特征就是正负号交替出现,如果排除正负号的因素,剩余的数字构成的就是常数列、基础数列以及前项相关数列,例如-1、+1、-1、+1…;+1、-2、+3、-4、+5…等。 变化形式四:前项相关数列(修正项为原数列的前项或前项的变型) |