潇缃孖 发表于 2012-3-16 15:29:30

3分钟搞定行测数量关系(不得不看)

1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b
2)深一愕模型,各数之间的差有规律,如1、2、5、10、17。它们之间的差为1、3、5、7,成等差数列。这些规律还有差之间成等比之类。B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
3)看各数的大小组合规律,作出合理的分组。如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436,这就是规律。
4)如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数7+14=10+11=9+12。首尾关系经常被忽略,但又是很简单的规律。B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。这组数比较巧的是都是6的倍数,容易导入歧途。
6)看大小不能看出来的,就要看数的特征了。如21、31、47、56、69、72,它们的十位数就是递增关系,如 25、58、811、1114,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上fjjngs解答:256,269,286,302,(),2+5+6=13    2+6+9=17   2+8+6=16  3+0+2=5,∵ 256+13=269  269+17=286  286+16=302∴ 下一个数为 302+5=307。
7)再复杂一点,如0、1、3、8、21、55,这组数的规律是b*3-a=c,即相邻3个数之间才能看出规律,这算最简单的一种,更复杂数列也用把前面介绍方法深化后来找出规律。
8)分数之间的规律,就是数字规律的进一步演化,分子一样,就从分母上找规律;或者第一个数的分母和第二个数的分子有衔接关系。而且第一个数如果不是分数,往往要看成分数,如2就要看成2/1。
补充: 1)中间数等于两边数的乘积,这种规律往往出现在带分数的数列中,且容易忽略
        如1/2、1/6、1/3、2、6、3、1/2
2)数的平方或立方加减一个常数,常数往往是1,这种题要求对数的平方数和立方数比较熟悉
        如看到2、5、10、17,就应该想到是1、2、3、4的平方加1
        如看到0、7、26、63,就要想到是1、2、3、4的立方减1
       对平方数,个人觉得熟悉1~20就够了,对于立方数,熟悉1~10就够了,而且涉及到平方、立
       方的数列往往数的跨度比较大,而且间距递增,且递增速度较快
3)A^2-B=C 因为最近碰到论坛上朋友发这种类型的题比较多,所以单独列出来
       如数列 5,10,15,85,140,7085
       如数列 5,6,19,    17 ,344 , -55 
       如数列 5, 15, 10, 215,-115
       这种数列后面经常会出现一个负数,所以看到前面都是正数,后面突然出现一个负数,就考虑这个规律看看
4)奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项是另一个规律,互相成干扰项
       如数列 1, 8, 9, 64, 25,216
       奇数位1、9、25 分别是1、3、5的平方
       偶数位8、64、216是2、4、6的立方
      先补充到这儿。。。。。。
5) 后数是前面各数之各,这种数列的特征是从第三个数开始,呈2倍关系
       如数列:1、2、3、6、12、24
       由于后面的数呈2倍关系,所以容易造成误解!

捕快97 发表于 2012-3-16 15:52:58

重在实践

木雨之春 发表于 2012-3-16 19:04:16

{:5_556:}

LDVE 发表于 2012-3-19 11:53:04

欧也。

LDVE 发表于 2012-3-19 11:53:07

欧也。

LDVE 发表于 2012-3-19 11:53:09

欧也。

LDVE 发表于 2012-3-19 11:53:11

欧也。

LDVE 发表于 2012-3-19 11:53:14

欧也。

LDVE 发表于 2012-3-19 11:53:16

欧也。

LDVE 发表于 2012-3-19 11:53:19

欧也。

LDVE 发表于 2012-3-19 11:53:21

欧也。

LDVE 发表于 2012-3-19 11:53:26

欧也。

LDVE 发表于 2012-3-19 11:53:29

欧也。

LDVE 发表于 2012-3-19 11:53:32

欧也。

LDVE 发表于 2012-3-19 11:53:38

欧也。

LDVE 发表于 2012-3-19 11:53:41

欧也。

LDVE 发表于 2012-3-19 11:53:46

欧也。

LDVE 发表于 2012-3-19 11:53:49

欧也。

LDVE 发表于 2012-3-19 11:53:53

欧也。

LDVE 发表于 2012-3-19 11:53:56

欧也。

LDVE 发表于 2012-3-19 11:53:59

欧也。

LDVE 发表于 2012-3-19 11:54:01

欧也。

LDVE 发表于 2012-3-19 11:54:04

欧也。

LDVE 发表于 2012-3-19 11:54:15

欧也。

LDVE 发表于 2012-3-19 11:54:18

欧也。
页: [1] 2
查看完整版本: 3分钟搞定行测数量关系(不得不看)